

Consolidated Geo-Database

CHIST-ERA-19-CES-005

SUSTAINABLE WATERSHED MANAGEMENT THROUGH INTERNET OF

THINGS DRIVEN ARTIFICIAL INTELLIGENCE

D2.2

This work was supported by the CHIST-ERA grant.

1
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

● DOCUMENT RECORD

Deliverable Title Consolidated Geo-Database

Corresponding Work Package 2.2

Related Tasks 2.3, 5.1, and 5.2

Dissemination Level

Due Submission Date 15/01/2021

Actual Submission Date 18/02/2022

Responsible Partner USI

Version Date Author Comments

0.1 14/02/2022 Imoscopi, Riva, Lukovic First draft

1.0 21/02/2022 Imoscopi. Riva, Lukovic First submission

●

2
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

● TABLE OF CONTENTS

● 1

● 2

1. 3

2. 3

3. 4

4. 5

ANNEX A 6

DATA EXCHANGE PROTOCOL 6
A.1 LOCATIONS_META.csv 7

a. 7

A.2 TS_DATA.csv 7
A.3 MEASUREMENT_TYPES_META.csv 7

3
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

1. EXECUTIVE SUMMARY

The goal of WP 2.2 is to design a unified data storage and exchange format that can
work for both SWAIN use cases: river Ergene and river Kokemäenjoki.

River and weather data are usually available in heterogeneous formats, and it is
difficult to build data analysis pipelines that work everywhere.
We aim at creating a modular, scalable and secure platform enabling data collection,
storage and easy access, in a unified and standardized manner.

2. DATA TYPES

To store the data we use MongoDB. It was chosen for its popularity, flexibility and
performance.
It is currently the most popular non-relational DB in the world, where everything is
stored as simple and human-readable JSON documents. BSON is used to store the
JSON data efficiently.

The data for our use case can be divided in two parts:

1) Static GIS data: mostly composed of geographical features, such as river
network, basins, land use, geographical landmarks, weather stations.
This data is composed of geo-referenced points, lines and polygons.
Common file formats for GIS vector data are:
● Shapefile, for legacy reason.
● GeoPackage, more modern and efficient in terms of size and performance.
● GeoJSON, the simplest one, widely used on the web and in many open-

source GIS packages.

We used GeoJSON for its simplicity, popularity and similarity with MongoDB
documents, but it is straightforward to write functions to import/export also
from/to other formats.

In addition, we might need to handle also GIS raster data, like the ones used
to store digital elevation models (DEM). As an example, we used EU-DEM
v1.1 from Copernicus website, to get elevations for our regions of interest.
The most common format for raster is GeoTIFF (geo-referenced TIFF image).
Raster data can be very heavy in terms of memory consumption.

We refer to GIS file formats for a more in depth discussion.

2) Dynamic time series data: weather data, river measurements, physical and

conventional parameters, chemicals, micropollutants and other water quality
indicators. All this are functions of time and space.
Time-series data is usually stored and shared in tabular form, for example as
CSV.
In MongoDB, we can store it as documents in a TimeSeries collection. There
are many ways to model the data, the simplest one is having one document
per unique measurement, but we could also have one document per unique

https://www.mongodb.com/
https://www.phpflow.com/misc/top-nosql-databases-in-2022/
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/Shapefile
https://www.geopackage.org/
https://geojson.org/
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://en.wikipedia.org/wiki/GeoTIFF
https://en.wikipedia.org/wiki/GIS_file_formats

4
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

timestamp, containing multiple measurements of different type or from
multiple locations.

We refer to the specifications in the code repository for the implementation
details and the data modeling choices we make.

Static and dynamic data are stored in distinct collections, where the
measurements link to the geospatial part (and to other metadata) via unique
IDs.

3. ARCHITECTURE

The structure of the data platform is summarized graphically:

On the left, we follow the input data processing and injection in the DB.

● Data intake methods: to parse the static and dynamic data of the watersheds,

in various formats.

● Input transformation and enrichment: to convert the data to MongoDB

documents for storage.

Data enrichment can follow, optionally using extra static data.

5
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

For example, assigning elevation in meters to the various geographical points,

by using interpolation over the EU DEM dataset.

● Data injection: using a MongoDB driver to push the data to the DB. We

choose to use PyMongo for Python.

Optionally, schema validation can be enforced using JSON schema, to avoid

storing data in the wrong JSON format.

On the right, we follow the data output through querying and retrieval.

● Data access: using MQL (Mongo Query Language) and aggregation pipelines

to extract what we need from the MongoDB Collections. As a driver, we can still

use the language we prefer, like python, but also MongoDB Compass, a GUI

that allows quick graphical inspection and export of the dataset, without having

to write code.

● Output processing block: the next output block can provide the most common

operations needed to build applications on top of the DB, like data

transformation, pre-processing for data analysis and output in various formats.

The green circle, at the top right, represents the users (e.g. hydrology and machine

learning researchers), who will be able to build services on top and benefit from the

consolidated geo-database.

In the scope of SWAIN, the code for this work is being developed at USI and the

MongoDB will be hosted on a USI virtual machine. Proper access rights will be granted

to all relevant SWAIN partners, making sure to keep the access secure, with

authentication. In the future, the DB could be open sourced to a larger audience.

4. CONCLUSIONS

The open-source data platform under construction will help build analysis and tools
that are applicable to different watersheds in a plug and play manner.

It might also be extended to other types of data that present one static (GIS) and one
dynamic (time series) component.

The only requirement would be to convert the data in the standardized way specified
on the code repository, and add it to the DB.

Other hydrology datasets might be converted and added in the future, allowing to re-
use the same tools. For example, the LamaH or CAMELS datasets, widely used in
computational hydrology research.

In the future, other tools could be written to export the data from MongoDB in various
standardized formats. This might be useful for legacy compatibility, file exchange
and to adapt to other data analysis pipelines.

https://docs.mongodb.com/drivers/
https://pypi.org/project/pymongo/
https://json-schema.org/
https://docs.mongodb.com/manual/tutorial/query-documents/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://www.mongodb.com/products/compass

6
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

● ANNEX A

o DATA EXCHANGE PROTOCOL

The exchange of data between SWAIN partners has been formalized with a Data

Exchange Protocol (DEP), which consolidates a common and unique format. The DEP

has been designed with the SWAIN data in mind, and is flexible enough to support the

exchange of all types of data related to SWAIN. The origin of the data can be one of

three sources: either directly measured at the gauges, catchments, and meteorological

stations of the Kokemajoki or the Ergene river. The last source of data can be instead

physical simulations.

The files formatted according to the DEP can be directly parsed into the unified

MongoDB storage solution. The DEP is composed of 4 parts, one specifically devoted

to one kind of data or other pieces of information. Geographical information and time

series data make the core of the DEP, and are represented with two CSV files:

LOCATIONS_META and TS_DATA.

The first of these files contains all the relevant geographical locations where some

time-series has been recorded, e.g. meteorological station, catchment.

7
SWAIN: Sustainable Watershed Management Through IoT-Driven AI

●

●

● A.1 LOCATIONS_META.csv

Location_ID
(unique, int)

Loc_Name
(string)

Loc_Type
(string)

River_Name
(string)

Longitude
(decimal
DEG)

Latitude
(decimal
DEG)

Altitude
(m)

Info
(string)

1 WEA Ergene 8.951052 46.003677 38.00

a. Location Types

WEA Weather station

FLW Flow Rate station

WAL Water levels location

CSD Cross section depth location

CHE Chemicals sampling location

MSC Misc location, multivariate time series

SIM Simulated location, multivariate time series

The TS_DATA is structured to contain all datapoints of each time-series. Each

timestamp is also associated not only with a location, but also with a measurement

type, which records what type of measurement has been taken.

Measurement types are unique, and are collected under a different CSV file called

MEASUREMENT_TYPES_META.

● A.2 TS_DATA.csv

MeasurementT_ID
(int)

Location_ID
(unique, int)

Timestamp
(timestamp)

Measurement
(float)

7 1 2020-06-01-12-30-35 3.0

● A.3 MEASUREMENT_TYPES_META.csv

MeasurementT_ID
(unique, int)

Class
(string)

Measurement_Type
(string)

Unit
(string)

Info
(string)

1 Weather Rain accumulation mm

