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1. EXECUTIVE SUMMARY 

The goal of WP 2.2 is to design a unified data storage and exchange format that can 
work for both SWAIN use cases: river Ergene and river Kokemäenjoki. 
 
River and weather data are usually available in heterogeneous formats, and it is 
difficult to build data analysis pipelines that work everywhere. 
We aim at creating a modular, scalable and secure platform enabling data collection, 
storage and easy access, in a unified and standardized manner. 
 

2. DATA TYPES 

 
To store the data we use MongoDB. It was chosen for its popularity, flexibility and 
performance.  
It is currently the most popular non-relational DB in the world, where everything is 
stored as simple and human-readable JSON documents. BSON is used to store the 
JSON data efficiently. 
 
The data for our use case can be divided in two parts: 

1) Static GIS data: mostly composed of geographical features, such as river 
network, basins, land use, geographical landmarks, weather stations.  
This data is composed of geo-referenced points, lines and polygons.  
Common file formats for GIS vector data are:  
● Shapefile, for legacy reason. 
● GeoPackage, more modern and efficient in terms of size and performance. 
● GeoJSON, the simplest one, widely used on the web and in many open-

source GIS packages. 
 
We used GeoJSON for its simplicity, popularity and similarity with MongoDB 
documents, but it is straightforward to write functions to import/export also 
from/to other formats. 
 
In addition, we might need to handle also GIS raster data, like the ones used 
to store digital elevation models (DEM). As an example, we used EU-DEM 
v1.1 from Copernicus website, to get elevations for our regions of interest. 
The most common format for raster is GeoTIFF (geo-referenced TIFF image). 
Raster data can be very heavy in terms of memory consumption.  
 
We refer to GIS file formats for a more in depth discussion. 

 
2) Dynamic time series data: weather data, river measurements, physical and 

conventional parameters, chemicals, micropollutants and other water quality 
indicators. All this are functions of time and space.  
Time-series data is usually stored and shared in tabular form, for example as 
CSV.  
In MongoDB, we can store it as documents in a TimeSeries collection. There 
are many ways to model the data, the simplest one is having one document 
per unique measurement, but we could also have one document per unique 

https://www.mongodb.com/
https://www.phpflow.com/misc/top-nosql-databases-in-2022/
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/Shapefile
https://www.geopackage.org/
https://geojson.org/
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://en.wikipedia.org/wiki/GeoTIFF
https://en.wikipedia.org/wiki/GIS_file_formats
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timestamp, containing multiple measurements of different type or from 
multiple locations. 

 
We refer to the specifications in the code repository for the implementation 
details and the data modeling choices we make.       
 
Static and dynamic data are stored in distinct collections, where the 
measurements link to the geospatial part (and to other metadata) via unique 
IDs. 

 

3. ARCHITECTURE 

The structure of the data platform is summarized graphically: 

 

 

On the left, we follow the input data processing and injection in the DB. 

● Data intake methods: to parse the static and dynamic data of the watersheds, 

in various formats. 

● Input transformation and enrichment: to convert the data to MongoDB 

documents for storage. 

Data enrichment can follow, optionally using extra static data.  
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For example, assigning elevation in meters to the various geographical points, 

by using interpolation over the EU DEM dataset. 

● Data injection: using a MongoDB driver to push the data to the DB. We 

choose to use PyMongo for Python. 

Optionally, schema validation can be enforced using JSON schema, to avoid 

storing data in the wrong JSON format. 

On the right, we follow the data output through querying and retrieval. 

● Data access: using MQL (Mongo Query Language) and aggregation pipelines 

to extract what we need from the MongoDB Collections. As a driver, we can still 

use the language we prefer, like python, but also MongoDB Compass, a GUI 

that allows quick graphical inspection and export of the dataset, without having 

to write code. 

● Output processing block: the next output block can provide the most common 

operations needed to build applications on top of the DB, like data 

transformation, pre-processing for data analysis and output in various formats. 

The green circle, at the top right, represents the users (e.g. hydrology and machine 

learning researchers), who will be able to build services on top and benefit from the 

consolidated geo-database. 

In the scope of SWAIN, the code for this work is being developed at USI and the 

MongoDB will be hosted on a USI virtual machine. Proper access rights will be granted 

to all relevant SWAIN partners, making sure to keep the access secure, with 

authentication. In the future, the DB could be open sourced to a larger audience. 

4. CONCLUSIONS 

 
The open-source data platform under construction will help build analysis and tools 
that are applicable to different watersheds in a plug and play manner.  
 
It might also be extended to other types of data that present one static (GIS) and one 
dynamic (time series) component. 
 
The only requirement would be to convert the data in the standardized way specified 
on the code repository, and add it to the DB. 
 
Other hydrology datasets might be converted and added in the future, allowing to re-
use the same tools. For example, the LamaH or CAMELS datasets, widely used in 
computational hydrology research. 
 
In the future, other tools could be written to export the data from MongoDB in various 
standardized formats. This might be useful for legacy compatibility, file exchange 
and to adapt to other data analysis pipelines. 
 

 

https://docs.mongodb.com/drivers/
https://pypi.org/project/pymongo/
https://json-schema.org/
https://docs.mongodb.com/manual/tutorial/query-documents/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://www.mongodb.com/products/compass
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● ANNEX A 

o DATA EXCHANGE PROTOCOL 

The exchange of data between SWAIN partners has been formalized with a Data 

Exchange Protocol (DEP), which consolidates a common and unique format. The DEP 

has been designed with the SWAIN data in mind, and is flexible enough to support the 

exchange of all types of data related to SWAIN. The origin of the data can be one of 

three sources: either directly measured at the gauges, catchments, and meteorological 

stations of the Kokemajoki or the Ergene river. The last source of data can be instead 

physical simulations. 

 

The files formatted according to the DEP can be directly parsed into the unified 

MongoDB storage solution. The DEP is composed of 4 parts, one specifically devoted 

to one kind of data or other pieces of information. Geographical information and time 

series data make the core of the DEP, and are represented with two CSV files: 

LOCATIONS_META and TS_DATA. 

The first of these files contains all the relevant geographical locations where some 

time-series has been recorded, e.g. meteorological station, catchment. 
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●  

●  

● A.1 LOCATIONS_META.csv 

Location_ID 
(unique, int) 

Loc_Name 
(string) 

Loc_Type 
(string) 

River_Name 
(string) 

Longitude 
(decimal 
DEG) 

Latitude 
(decimal 
DEG) 

Altitude 
(m) 

Info 
(string) 

1  WEA Ergene 8.951052 46.003677 38.00  

a. Location Types 

WEA Weather station 

FLW Flow Rate station 

WAL Water levels location 

CSD Cross section depth location 

CHE Chemicals sampling location 

MSC Misc location, multivariate time series 

SIM Simulated location, multivariate time series 

The TS_DATA is structured to contain all datapoints of each time-series. Each 

timestamp is also associated not only with a location, but also with a measurement 

type, which records what type of measurement has been taken.  

Measurement types are unique, and are collected under a different CSV file called 

MEASUREMENT_TYPES_META. 

● A.2 TS_DATA.csv 

MeasurementT_ID 
(int) 

Location_ID 
(unique, int) 

Timestamp 
(timestamp) 

Measurement 
(float) 

7 1 2020-06-01-12-30-35 3.0 

 

● A.3 MEASUREMENT_TYPES_META.csv 

MeasurementT_ID 
(unique, int) 

Class 
(string) 

Measurement_Type 
(string) 

Unit 
(string) 

Info  
(string) 

1 Weather Rain accumulation mm  

 


